PAGE
7

ICS 103 – Computer Programming in C

Spring Semester 2011/2012 (112)
Lab# 5 Repetition Statements
Objectives:

Learn C repetition statements by covering the following topics:
1. while loops
2. do-while loops

3. for-loops

4. Nested loops

· while-statement
A while-statement is used to execute a statement or a compound-statement zero or more times as long as the while-condition is true:

while(condition)

 while-body

The while-body can be a simple statement in which case it must be terminated by a semicolon or it may be a compound-statement in which case it should not be terminated by a semicolon:

	Simple statement while-body
	Compound-statement while-body

	while(condition)

 statement;
	while(condition)

 compound-statement

	 [image: image1.png]while-body

 Examples:

	while-loop
	output

	int n = 1;

while(n <= 10){

 printf("%d ", n);

 n += 2;

 }
	1 3 5 7 9

	int k = 12;

while(k > 6)

 printf("%d ", k--);
	12 11 10 9 8 7

	int num = 2;

printf("number\tsquare root\tsquare\n");

while(num <= 5){

 printf("%d\t%.2f\t%2d\n", num, sqrt(num), num * num);

 num++;

}
	number square root square

2 1.41 4

3 1.73 9

4 2.00 16

5 2.24 25

· Sentinel controlled loops
In a program, a sentinel is a value that marks the end of a series of data values; but is not a data value itself. Sentinels may be used to control loops:

Example: Write a C program fragment that prompts for and reads student grades in a quiz. It then calculates and displays the average. Use a negative value as the sentinel.

int count = 0;

double grade, sumOfGrades = 0.0;

printf("Enter grade#%d (-ve value to terminate)\n", count+1);

scanf("%lf", &grade);

while(grade >= 0){

 count++;

 sumOfGrades += grade;

 printf("Enter grade#%d (-ve value to terminate)\n", count+1);

 scanf("%lf", &grade);

}

if(count == 0)

 printf("Error: No valid grade entered\n");

else

 printf("Average = %.2f\n", sumOfGrades / count);

· do-while statement

A do-while statement is used to execute a statement or a compound-statement one or more times as long as the do-while condition is true:

do

 do-while body

 while(condition);

The do-while body can be a simple statement in which case it must be terminated by a semicolon or it may be a compound-statement in which case it MUST NOT be terminated by a semicolon:

	Simple statement do-while body
	Compound-statement do-while body

	do

 statement;

while(condition);
	do {

 compound_statement

} while(condition);

	 [image: image2.png]do-while body

 Examples:

	do-while loop
	output

	int n = 1;

do{

 printf("%d ", n);

 n += 2;

 } while(n <= 10);
	1 3 5 7 9

	int x = 25;
do
 printf("%d ", x -= 5);
while(x > 0);
	20 15 10 5 0

Example: A do-while loop can be used to validate input

 int n;

 do{

 printf ("Enter an integer number in [10,100] interval >");

 scanf("%d",&n);

 if(n<10 || n>100)

 printf("Sorry wrong input, try again\n");

 }while (n < 10 || n > 100);

 printf("Now your input is correct");

A do-while loop can be used in a menu driven program. The example shown below will continue running as long as the user did not enter the number 5.

#include <stdio.h>

void menu(void); // function prototype
int main(void){

 int choice;

 do{

 menu();

 printf("Enter your choice >");

 scanf("%d",&choice);

 // Here come the statements to do the different tasks
 } while (choice != 5);

 return 0;

}

void menu(void) {

printf("1-Addition\n");

printf("2-Subtraction\n");

printf("3-Multiplication\n");

printf("4-Division\n");

printf("5-Exit\n");

}

· for-statement
A for-statement is usually used to repeat a statement or a compound-statement if the number of repetitions is known. The body of a for-loop may be executed zero or more times.
 for(initialization; condition; update)

 for-body

The for-body can be a simple statement in which case it must be terminated by a semicolon, or it may be a compound-statement in which case it should not be terminated by a semicolon:

	Simple statement for-body
	Compound-statement for-body

	for(initialization; condition; update)

 statement;

	for(initialization; condition; update)

 compound_statement

	 [image: image3.png]initialization

false

true

for-body

|

update

 Examples:

	for-loop
	output

	int k;
for(k = 7; k <= 12; k++)
 printf("%d ", k);
	7 8 9 10 11 12

	int x ;

for(x = 8; x > 2; x--)

 if(x % 2 == 0)

 printf("%d is even\n", x);

 else

 printf("%d is odd\n", x);
	8 is even

7 is odd

6 is even

5 is odd

4 is even

3 is odd

 Loops like the ones in the above examples in which a variable is used to control the number of

 repetitions of the loop are called counting loops.

· Equivalent loops

A loop can always be converted to an equivalent loop of a different type. Examples:

	loop
	equivalent loop

	for(initialization;condition; update)

{

 statement1;

 statement2;

 . . .

 statementN;

}
	initialization;
 while(condition)

 {

 statement1;

 statement2;

 . . .

 statementN;

 update;

 }

	do{

 statement1;

 statement2;

 . . .

 statementN;

 update;

 } while(condition);
	 statement1;

 statement2;

 . . .

 statementN;

 update;

 while(condition){

 statement1;

 statement2;

 . . .

 statementN;

 update;

 }

 For example the following do-while loop:

 int n = 1;

 double x = 0, s;

 do{

 s = 1.0 / (n * n);

 x = x + s;
 printf("x = %f\n", x);
 n++;

 } while(s > 0.01);

is equivalent to the while-loop:

 int n = 1;

 double x = 0, s;

 s = 1.0 / (n * n);

 x = x + s;
 printf("x = %f\n", x);
 n++;

 while(s > 0.01){

 s = 1.0 / (n * n);

 x = x + s;
 printf("x = %f\n", x);
 n++;

 }
· Nested loops
A loop statement may contain in its body one or more loop statements.

Examples:

	Nested loops
	output

	int m, n;

for(m = 5; m >= 1; m--){

 printf("m is now %d\n", m);

 for(n = 1; n <= 4; n++)

 printf("n = %d ", n);

 }
	m is now 5

n = 1 n = 2 n = 3 n= 4

m is now 4

n = 1 n = 2 n = 3 n= 4

m is now 3

n = 1 n = 2 n = 3 n= 4

m is now 2

n = 1 n = 2 n = 3 n= 4

m is now 1

n = 1 n = 2 n = 3 n= 4

	int i,j;

for(i=1;i<=9;i++){

 for(j=1; j<=i; j++){

 printf("%d,",j);

 }

 printf("\n");

}
	[image: image4.png]

Example: Write a C program that prompts for and reads three quiz grades for each student in a class of four students. The program then computes and displays the average for each student. Your program must be easily modifiable to handle any number of students and quizzes.

 #include <stdio.h>
 #include <stdlib.h>
 #define NUMSTUDENTS 4
 #define NUMQUIZES 3
 int main(void){
 double grade, studentTotal, studentAverage;
 int m, n;
 for(m = 1; m <= NUMSTUDENTS; m++)
 {
 studentTotal = 0.0;
 for(n = 1; n <= NUMQUIZES; n++)
 {
 printf("Enter QuizGrade#%d for student#%d\n", n, m);
 scanf("%lf", &grade);
 studentTotal += grade;
 }
 studentAverage = studentTotal / NUMQUIZES;
 printf("The average for student#%d is %.2f\n", studentAverage);
 }
 system("pause");
 return 0;
}
Exercise: Modify the above program such that it also computes and displays the class average.
Laboratory Tasks
Task 1:
Using sentinel controlled loop (while or for loop), write a program that reads a radius from the user and displays the area and circumference of the circle with that radius. This task is repeated until the user types 0. Assume that the radius is in centimeters. Use a named constant PI with value 3.1429

Sample run:

[image: image5.png]3.5
3358 square on. circunforence - 22.00 cn

inter radius <@ to quit)
adius = 3.50 cm, area

nter radius <@ to quit)
adius = 5.0 cm, area

nter radius <@ to quit)
adius = 10.80 cn, area
nter radius <@ to quit)
adius = 23.46 om, area
nter radius <@ to quitd:

7857 square cn, circunference = 31.43 cn
i

314.29 square cn, circunference = 62.86 cm
2346
172376 square on, circunference = 147.46 cn

ress any key to continue . .

Task 2:
Using a while loop, write a C program to display a positive integer number typed by the user in reverse.
Sample run:

[image: image6.png]inter an integer number to be displayed in reverse:
753
eversed value = 3572

vess any key to continue . .

Hint: Use remainder of division by 10 and division by 10.
Task 3:
Using nested for loops, write a C program to print the pattern shown in the sample runs below on the screen.
Sample runs:

	[image: image7.png]Diics-103\1AWorkarea\labdex... [|| & Jjaa)

[Enter an inetegr from 1 to 10 >12 A
input should be between 1 and 18
[Press any key to continue .

	[image: image8.png]\112\Workarea\labded.
[Enter an inetegr from 1 to 10 >8

Task 4:
Using a do-while loop, write a C program to check that the user has typed a letter. The program must not stop until the user types a lowercase or uppercase letter.
Note: Use getchar() or fflush(stdin) to skip the new line character after reading each character.

Sample runs:

	[image: image9.png]inter
oxry
nten
oxry
nten
oxry
nten

a lower
you did
a lover
you did
a lover
you did
2 lower

case or uppercase letter: 4
not type a letter. Try again
case or uppercase letter:

not type a letter. Try again
case or uppercase letter: #
not type a letter. Try again
case or uppercase letter: A

outyped an uppercase letter
ress any key to continue . .

	[image: image10.png]inter
oxry
nten
oxry
nten
oxry
nten

a lower case or uppercase letter: x
you did not type a letter. Try again
a lower case or uppercase letter: \
you did not type a letter. Try again
a loyer case or uppercase letter: $
you did not type a letter. Try again
3 lower case or uppercase letter: d

ou_typed a lowercase letter
ress any key to continue . .

PAGE

